
 
 
 
 
 

INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section C 
 

Planning 



Situation Calculus: Ontology 
• Situations 

• Fluents 

• Atemporal (or eternal) 
predicates & functions 
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AIMA Section 10.3 



Situation Calculus: Ontology 
• Situations 

• Initial state: S0 

• A function Result(a.s) gives the situation resulting from 
applying action a in situation s 

• Fluents 

• Functions & predicates whose truth values can change from 
one situation to the other 

• Example: Holding(G1,S0) 

• Atemporal (or eternal) predicates and functions 

• Example: Gold(G1), LeftLegOf(Wumpus) 
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Situation Calculus 

• Sequence of actions 

• Result([],s)=s 

• Result([a|seq],s)=Result(seq,Result(a,s)) 

• Projection task 

• Deducing the outcome of a sequence of actions 

• Planning task 

• Find a sequence of actions that achieves a desired effect 
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Example: Wumpus World 

• Fluents 

• At(o,p,s), Holding(o,s) 

• Agent is in [1,1], gold is in [1,2] 

• At(Agent,[1,1],S0)  At(G1,[1,2],S0) 

• In S0, we also need to have: 

• At(o,x,S0)  [(o=Agent)  x=[1,1]]   [(o=G1)  x=[1,2]] 

• Holding(o,S0) 

• Gold(G1)  Adjacent([1,1],[1,2])  Adjacent([1,2],[1,1]) 

• The query is:  

•  seq At(G1,[1,1],Result(seq,S0)) 

• The answer is 

• At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0)) 
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Importance of Situation Calculus 

 Historical note 
 Situation Calculus was the first attempt to formalizing planning 

in FOL 

 Other formalisms include Event Calculus 

 The area of using logic for planning is informally called in the 
literature “Reasoning About Action & Change” 

 Highlighted three important problems 
1. Frame problem 

2. Qualification problem 

3. Ramification problem 
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‘Famous’ Problems 

• Frame problem 
• Representing all things that stay the same from one situation to 

the next 

• Inferential and representational 

• Qualification problem 
• Defining the circumstances under which an action is guaranteed 

to work 

• Example: what if the gold is slippery or nailed down, etc. 

• Ramification problem 
• Proliferation of implicit consequences of actions as actions may 

have secondary consequences 

• Examples: How about the dust on the gold? 7 



Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Algorithms 
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Planning Languages 

• Languages must represent.. 

• States 

• Goals  

• Actions 

• Languages must be 

• Expressive for ease of representation 

• Flexible for manipulation by algorithms 
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State Representation 

• A state is represented with a conjunction of 
positive literals 

• Using  

• Logical Propositions: Poor  Unknown 

• FOL literals: At(Plane1,OMA)  At(Plan2,JFK) 

• FOL literals must be ground & function-free 

• Not allowed: At(x,y) or At(Father(Fred),Sydney) 

• Closed World Assumption 

• What is not stated are assumed false 
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Goal Representation 

• Goal is a partially specified state 

• A proposition satisfies a goal if it contains all the atoms of the 
goal and possibly others.. 

• Example: Rich  Famous  Miserable satisfies the goal Rich  
Famous 
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Action Representation 

 Action Schema 

 Action name 

 Preconditions 

 Effects 

 Example 
Action(Fly(p,from,to), 

      PRECOND: At(p,from)  Plane(p)  Airport(from)  Airport(to) 

      EFFECT: At(p,from)  At(p,to)) 

 Sometimes, Effects are split into ADD list and 
DELETE list 
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Fly(WHI,LNK,OHA) 

At(WHI,LNK),Plane(WHI), 

Airport(LNK), Airport(OHA) 

At(WHI,OHA),  At(WHI,LNK) 



Applying an Action 

• Find a substitution list  for the variables  
• of all the precondition literals  

• with (a subset of) the literals in the current state description 

• Apply the substitution to the propositions in the effect 
list 

• Add the result to the current state description to 
generate the new state 

• Example: 
• Current  state: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  

Airport(SFO) 

• It satisfies the precondition with ={p/P1,from/JFK, to/SFO) 

• Thus the action Fly(P1,JFK,SFO) is applicable 

• The new current state is: At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2)  
Airport(JFK)  Airport(SFO) 
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Languages for Planning Problems 

• STRIPS  
• Stanford Research Institute Problem Solver 

• Historically important 

• ADL 
• Action Description Languages 

• See Table 11.1 for STRIPS versus ADL 

• PDDL 
• Planning Domain Definition Language 

• Revised & enhanced for the needs of the International Planning 
Competition 

• Currently version 3.1  
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http://ipc.informatik.uni-freiburg.de/PddlExtension


Example: Air Cargo 

• See Figure 11.2 

• Initial state 

• Goal State 

• Actions: Load, Unload, Fly 
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Example: Spare Tire Problem 

• See Figure 11.3 

• Initial State 

• Goal State 

• Actions:  
• Remove(Spare,Trunk), Remove(Flat, Axle) 

• PutOn(Spare,Axle) 

• LeaveOvernight 

• Note  

• the negated precondition  At(Flat,Axle) not allowed in STRIPS.  

• Could be easily replaced with Clear(Axle), adding one more 
predicate to the language 
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Example: Blocks World 

• See Fig 11.4 

• Initial state 

• Goal 

• Actions: 

• Move(b,x,y) 

• MoveToTable(b,x) 
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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State-Space Search (1) 

• Search the space of states (first chapters)  

• Initial state, goal test, step cost, etc. 

• Actions are the transitions between state 

• Actions are invertible (why?) 

• Move forward from the initial state: Forward State-Space Search 
or Progression Planning 

• Move backward from goal state: Backward State-Space Search or 
Regression Planning 
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State-Space Search (2) 
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State-Space Search (3) 
• Remember that the language has no functions symbols 

• Thus number of states is finite 

• And we can use any complete search algorithm (e.g., A*) 
• We need an admissible heuristic 

• The solution is a path, a sequence of actions: total-order planning 

• Problem: Space and time complexity 
• STRIPS-style planning is PSPACE-complete unless actions have  

• only positive preconditions and  

• only one literal effect 
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SRIPS in State-Space Search 

 STRIPS representation makes it easy to focus on 
‘relevant’ propositions and  
 Work backward from goal (using EFFECTS) 

 Work forward from initial state (using PRECONDITIONS) 

 Facilitating bidirectional search 
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Relevant Action 

• An action is relevant 

• In Progression planning when its preconditions match 
a subset of the current state 

• In Regression planning, when its effects match a 
subset of the current goal state 
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Consistent Action 

• The purpose of applying an action is to ‘achieves 
a desired literal’ 

• We should be careful that the action does not 
undo a desired literal (as a side effect) 

• A consistent action is an action that does not 
undo a desired literal 
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Backward State-Space Search 

• Given  
• A goal G description 

• An action A that is relevant and consistent 

• Generate a predecessor state where 
• Positive effects (literals) of A in G are deleted 

• Precondition literals of A are added unless they already appear 

• Substituting any variables in A’s effects to match literals in G  

• Substituting any variables in A’s preconditions to match 
substitutions in A’s effects 

• Repeat until predecessor description matches initial state 
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Heuristic to Speed up Search 

• We can use A*, but we need an admissible 
heuristic 

1. Divide-and-conquer: sub-goal independence 
assumption 

• Problem relaxation by removing 

2. … all preconditions 

3. … all preconditions and negative effects 

4. … negative effects only: Empty-Delete-List  
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1. Subgoal Independence Assumption 

• The cost of solving a conjunction of subgoals is the sum 
of the costs of solving each subgoal independently 

• Optimistic 
• Where subplans interact negatively 

• Example: one action in a subplan delete goal achieved by an 
action in another subplan  

• Pessimistic (not admissible) 
• Redundant actions in subplans can be replaced by a single action 

in  merged plan 
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2. Problem Relaxation: Removing Preconditions 

• Remove preconditions from action descriptions 

• All actions are applicable 

• Every literal in the goal is achievable in one step  

• Number of steps to achieve the conjunction of 
literals in the goal is equal to the number of 
unsatisfied literals 

• Alert 

• Some actions may achieve several literals 

• Some action may remove the effect of another action 
28 



3. Remove Preconditions & Negative Effects 

• Considers only positive interactions among 
actions to achieve multiple subgoals 

• The minimum number of actions required is the 
sum of the union of the actions’ positive effects 
that satisfy the goal 

• The problem is reduced to a set cover problem, 
which is NP-hard 

• Approximation by a greedy algorithm cannot 
guarantee an admissible heuristic 
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4. Removing Negative Effects (Only) 

• Remove all negative effects of actions (no action 
may destroy the effects of another) 

• Known as the Empty-Delete-List heuristic 

• Requires running a simple planning algorithm 

• Quick & effective 

• Usable in progression or regression planning 
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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Partial Order Planning (POP) 

 State-space search 
 Yields totally ordered plans (linear plans) 

 POP  
 Works on subproblems independently, then combines subplans 

 Example 

▪ Goal(RightShoeOn  LeftShoeOn) 

▪ Init() 

▪ Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 

▪ Action(RightSock, EFFECT: RightSockOn) 

▪ Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 

▪ Action(LeftSock, EFFECT: LeftSockOn) 
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POP Example & its linearization 
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Components of a Plan 
1. A set of actions 

2. A set of ordering constraints  
• A p B reads “A before B” but not necessarily immediately before B 

• Alert: caution to cycles A p B and B p A 

3. A set of causal links (protection intervals) between actions 
• A           B reads “A achieves p for B” and p must  remain true from the time A 

is applied to the time B is applied 

• Example “RightSock                      RightShoe 

4. A set of open preconditions 
• Planners work to reduce the set of open preconditions to the empty set w/o 

introducing contradictions 
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RightSockOn 



Consistent Plan (POP) 

• Consistent plan is a plan that has 
• No cycle in the ordering constraints 

• No conflicts with the causal links 

• Solution 
• Is a consistent plan with no open preconditions 

• To solve a conflict between a causal link A         B and an 
action C (that clobbers, threatens the causal link), we 
force C to occur outside the “protection interval”  by 
adding 
•  the constraint  C p A  (demoting C) or  

•  the constraint  B p C (promoting C) 
35 
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Setting up the PoP 

• Add dummy states  

• Start 

• Has no preconditions 

• Its effects are the literals of the initial state 

• Finish 

• Its preconditions are the literals of the goal state 

• Has no effects 

• Initial Plan: 
• Actions: {Start, Finish} 

• Ordering constraints: {Start p Finish} 

• Causal links: {} 

• Open Preconditions: {LeftShoeOn,RightShoeOn} 
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Start 

Finish 

Start 

Finish 

LeftShoeOn, RightShoeOn 

Literal1, Literal2, … 

Literala, Literalb, … 



POP as a Search Problem 

• The successor function arbitrarily picks one open 
precondition p on an action B 

• For every possible consistent action A that achieves p 
• It generates a successor plan adding the causal link  A          B and 

the ordering constraint  A p B 

• If A was not in the plan, it adds  Start p A and  A p Finish 

• It resolves all conflicts between  

• the new causal link and all existing actions  

• between A and all existing causal links 

• Then it adds the successor states for  combination of resolved 
conflicts 

• It repeats until no open precondition exists 

 

 

37 

p 



Example of POP: Flat tire problem 

• See problem description in Fig 11.7 page 391 

 
 

 

• Only one open precondition 

• Only 1 applicable action 
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Start 

Finish 

At(Spare,Trunk), At(Flat,Axle) 

At(Spare,Axle) 

PutOn(Spare,Axle) 

At(Spare,Ground), At(Flat,Axle) 

• Pick up At(Spare,Ground) 

• Choose only applicable action 

Remove(Spare,Trunk) 
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• Pick up At(Flat,Axle) 

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle) 

• Choose LeaveOvernight 

Add causal link between 

Remove(Spare,Trunk) and 

PutOn(Spare,Axle) 

• LeaveOvernight has effect 

At(Spare,Ground), which conflicts 

with the causal link 

• We remove the conflict by 

forcing LeaveOvernight to occur 

before Remove(Spare,Trunk) 
• Conflicts with effects of Remove(Spare,Trunk) 

• The only way to resolve the conflict is to undo LeaveOvernightuse the action 

Remove(Flat,Axle) 
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• This time, we choose Remove(Flat,Axle) 

• Pick up At(Spare,Trunk) and choose Start to achieve it 

• Pick up At(Flat,Axle) and choose Start to achieve it. 

• We now have a complete consistent partially ordered plan 



POP Algorithm (1) 

• Backtrack when fails to resolve a threat or find an 
operator 

• Causal links  
• Recognize when to abandon a doomed plan without wasting time 

expanding irrelevant part of the plan 

• allow early pruning of inconsistent combination of actions 

• When actions include variables, we need to find 
appropriate substitutions 
• Typically we try to delay commitments to instantiating a variable 

until we have no other choice (least commitment)  

• POP is sound, complete, and systematic (no repetition) 
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POP Algorithm (2) 

• Decomposes the problem (advantage)  

• But does not represent states explicitly: it is hard to 
design heuristic to estimate distance from goal 
• Example: Number of open preconditions – those that match the 

effects of the start node.  Not perfect (same problems as before) 

• A heuristic can be used to choose which plan to refine 
(which precondition to pick-up):  
• Choose the most-constrained precondition, the one satisfied by 

the least number of actions.  Like in CSPs!  

• When no action satisfies a precondition, backtrack! 

• When only one action satisfies a precondition, pick up the 
precondiction.  
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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Planning Graph 
 Is special data structure used for  

1. Deriving better heuristic estimates 
2. Extract a solution to the planning problem: GRAPHPLAN algorithm 

 Is a sequence S0,A0,S1,A1,…,Si of levels 
 Alternating state levels & action levels 
 Levels correspond to time stamps 
 Starting at initial state 
 State level is a set of (propositional) literals 

▪ All those literals that could be true at that level 

 Action level is a set of (propositionalized) actions 
▪ All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.) 

 Propositionalization may yield combinatorial explosition in the presence of a large 
number of objects 

 
 
 
 

  
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Focus 

• Building the Planning Graph 

• Using it for Heuristic Estimation 

• Using it for generating the plan 
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Example of a Planning Graph (1) 
Init(Have(Cake)) 

Goal(Have(Cake)Eaten(Cake)) 
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Action(Eat(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)Eaten(Cake)) 

Action(Bake(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)) 

Propositions true at 
the initial state 

Action is connected to its 
preconds & effects 

Persistence Actions (noop) 



Example of a Planning Graph (2) 
• At each state level, list all literals that may hold at that level 

• At each action level, list all noops & all actions whose preconditions may hold at 
previous levels 

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1) 

• Building the Planning Graph is a polynomial process 

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 
between conflicting literals 
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Mutual exclusion links S1 represents multiple states 



Mutex Links between Actions 

1. Inconsistent effects: one action negates an effect of another 
• Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake) 

2. Interference: An action effect negates the precondition of another 
• Eat(Cake) negates precondition of the noop of Have(Cake):  

3. Competing needs: A precondition on an action is mutex with the 
precondition of another 
• Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition 
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Mutex Links between Literals 

1. Two literals are negation of each other 

2. Inconsistent support: Each pair of actions that can 
achieve the two literals is mutex.  Examples: 
• In S1, Have(Cake) & Eaten(Cake) are mutex 

• In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) 
are not mutex 
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Focus 

 Building the Planning Graph 
 Using it for Heuristic Estimation 

 Planning graph as a relaxation of original problem 

 Easy to build (compute) 
 Using it for generating the plan 
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Planning Graph for Heuristic Estimation 

• A literal that does not appear in the final level cannot be achieved by 
any plan 

• State-space search: Any state containing an unachievable literal has cost 
h(n)= 

• POP: Any plan with an unachievable open condition has cost h(n)= 

• The estimate cost of any goal literal is the first level at which it 
appears 

• Estimate is admissible for individual literals 

• Estimate can be improved by serializing the graph (serial planning graph: 
one action per level) by adding mutex between all actions in a given level 

• The estimate of a conjunction of goal literals 
• Three heuristics: max level, level sum, set level  
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Estimate of Conjunction of Goal Literals 

• Max-level 
• The largest level of a literal in the conjunction 

• Admissible, not very accurate 

• Level sum  
• Under subgoal independence assumption, sums the level costs of 

the literals 

• Inadmissible, works well for largely decomposable problems 

• Set level 
• Finds the level  at which all literals appear w/o any pair of them 

being mutex 

• Dominates max-level, works extremely well on problems where 
there is a great deal of interaction among subplans 52 



Focus 

 Building the Planning Graph 
 Using it for Heuristic Estimation 
 Using it for generating the plan 

 GraphPlan algorithm [Blum & Furst, 95] 
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GRAPHPLAN algorithm 

GRAPHPLAN(problem) returns solution or failure 
graph  INITIALPLANNINGGRAPH(problem) 
goals  GOALS[problem] 
loop do 
    if goals all non-mutex in last level of graph then do 
       solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph)) 
       if solution  failure then return solution 
       else if  NOSOLUTIONPOSSIBLE(graph) then return failure 
    graph  EXPANDGRAPH (graph,problem) 

   
 Two main stages 

1. Extract solution 

2. Expand the graph 
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Example of GRAPHPLAN Execution (1) 
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• At(Spare,Axle) is not in S0 

• No need to extract solution 

• Expand the plan 



Example of GRAPHPLAN Execution (2) 
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• Three actions 
are applicable 

• 3 actions and 
5 noops are 
added 

• Mutex links 
are added 

• At(Spare,Axle) 
still not in S1 

• Plan is 
expanded 



Example of GRAPHPLAN Execution (3) 
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• Illustrates well mutex links: inconsistent effects, interference, 
competing needs, inconsistent support 



Solution Extraction (Backward) 
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1. Solve a Boolean CSP:  Variables are actions, domains are 
{0=out of plan, 1=in plan), constraints are mutex 

2. Search problem from last level backward 



Backtrack Search for Solution Extraction 

• Starting at the highest fact level 

• Each goal is put in a goal list for the current fact layer 

• Search iterates thru each fact in the goal list trying to find an action to 
support it which is not mutex with any other chosen action 

• When an action is chosen, its preconditions are added to the goal list of 
the lower level 

• When all facts in the goal list of the current level have a consistent 
assignment of actions, the search moves to the next level 

• Search backtracks to the previous level when it fails to assign an 
action to each fact in the goal list at a given level 

• Search succeeds when the first level is reached. 
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Termination of GRAPHPLAN 

 GRAPHPLAN is guaranteed to terminate 

 Literal increase monotonically 

 Actions increase monotonically 

 Mutexes decrease monotinically 

 A solution is guaranteed not to exist when 

 The graph levels off with all goals present & non-mutex, and 

 EXTRACTSOLUTION fails to find solution 
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Optimality of GRAPHPLAN  

 The plans generated by GRAPHPLAN  

  Are optimal in the number of steps needed to execute the plan 

 Not necessarily optimal in the number of actions in the plan  
(GRAPHPLAN produces partially ordered plans) 
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Outline 
 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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