
 
 
 
 
 

INTELLIGENT SYSTEMS (CSE-303-F) 
 

Section C 
 

Planning 



Situation Calculus: Ontology 
• Situations 

• Fluents 

• Atemporal (or eternal) 
predicates & functions 

2 

AIMA Section 10.3 



Situation Calculus: Ontology 
• Situations 

• Initial state: S0 

• A function Result(a.s) gives the situation resulting from 
applying action a in situation s 

• Fluents 

• Functions & predicates whose truth values can change from 
one situation to the other 

• Example: Holding(G1,S0) 

• Atemporal (or eternal) predicates and functions 

• Example: Gold(G1), LeftLegOf(Wumpus) 
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Situation Calculus 

• Sequence of actions 

• Result([],s)=s 

• Result([a|seq],s)=Result(seq,Result(a,s)) 

• Projection task 

• Deducing the outcome of a sequence of actions 

• Planning task 

• Find a sequence of actions that achieves a desired effect 
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Example: Wumpus World 

• Fluents 

• At(o,p,s), Holding(o,s) 

• Agent is in [1,1], gold is in [1,2] 

• At(Agent,[1,1],S0)  At(G1,[1,2],S0) 

• In S0, we also need to have: 

• At(o,x,S0)  [(o=Agent)  x=[1,1]]   [(o=G1)  x=[1,2]] 

• Holding(o,S0) 

• Gold(G1)  Adjacent([1,1],[1,2])  Adjacent([1,2],[1,1]) 

• The query is:  

•  seq At(G1,[1,1],Result(seq,S0)) 

• The answer is 

• At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0)) 
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Importance of Situation Calculus 

 Historical note 
 Situation Calculus was the first attempt to formalizing planning 

in FOL 

 Other formalisms include Event Calculus 

 The area of using logic for planning is informally called in the 
literature “Reasoning About Action & Change” 

 Highlighted three important problems 
1. Frame problem 

2. Qualification problem 

3. Ramification problem 
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‘Famous’ Problems 

• Frame problem 
• Representing all things that stay the same from one situation to 

the next 

• Inferential and representational 

• Qualification problem 
• Defining the circumstances under which an action is guaranteed 

to work 

• Example: what if the gold is slippery or nailed down, etc. 

• Ramification problem 
• Proliferation of implicit consequences of actions as actions may 

have secondary consequences 

• Examples: How about the dust on the gold? 7 



Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Algorithms 
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Planning Languages 

• Languages must represent.. 

• States 

• Goals  

• Actions 

• Languages must be 

• Expressive for ease of representation 

• Flexible for manipulation by algorithms 
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State Representation 

• A state is represented with a conjunction of 
positive literals 

• Using  

• Logical Propositions: Poor  Unknown 

• FOL literals: At(Plane1,OMA)  At(Plan2,JFK) 

• FOL literals must be ground & function-free 

• Not allowed: At(x,y) or At(Father(Fred),Sydney) 

• Closed World Assumption 

• What is not stated are assumed false 
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Goal Representation 

• Goal is a partially specified state 

• A proposition satisfies a goal if it contains all the atoms of the 
goal and possibly others.. 

• Example: Rich  Famous  Miserable satisfies the goal Rich  
Famous 
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Action Representation 

 Action Schema 

 Action name 

 Preconditions 

 Effects 

 Example 
Action(Fly(p,from,to), 

      PRECOND: At(p,from)  Plane(p)  Airport(from)  Airport(to) 

      EFFECT: At(p,from)  At(p,to)) 

 Sometimes, Effects are split into ADD list and 
DELETE list 
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Fly(WHI,LNK,OHA) 

At(WHI,LNK),Plane(WHI), 

Airport(LNK), Airport(OHA) 

At(WHI,OHA),  At(WHI,LNK) 



Applying an Action 

• Find a substitution list  for the variables  
• of all the precondition literals  

• with (a subset of) the literals in the current state description 

• Apply the substitution to the propositions in the effect 
list 

• Add the result to the current state description to 
generate the new state 

• Example: 
• Current  state: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK)  

Airport(SFO) 

• It satisfies the precondition with ={p/P1,from/JFK, to/SFO) 

• Thus the action Fly(P1,JFK,SFO) is applicable 

• The new current state is: At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2)  
Airport(JFK)  Airport(SFO) 
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Languages for Planning Problems 

• STRIPS  
• Stanford Research Institute Problem Solver 

• Historically important 

• ADL 
• Action Description Languages 

• See Table 11.1 for STRIPS versus ADL 

• PDDL 
• Planning Domain Definition Language 

• Revised & enhanced for the needs of the International Planning 
Competition 

• Currently version 3.1  
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http://ipc.informatik.uni-freiburg.de/PddlExtension


Example: Air Cargo 

• See Figure 11.2 

• Initial state 

• Goal State 

• Actions: Load, Unload, Fly 
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Example: Spare Tire Problem 

• See Figure 11.3 

• Initial State 

• Goal State 

• Actions:  
• Remove(Spare,Trunk), Remove(Flat, Axle) 

• PutOn(Spare,Axle) 

• LeaveOvernight 

• Note  

• the negated precondition  At(Flat,Axle) not allowed in STRIPS.  

• Could be easily replaced with Clear(Axle), adding one more 
predicate to the language 
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Example: Blocks World 

• See Fig 11.4 

• Initial state 

• Goal 

• Actions: 

• Move(b,x,y) 

• MoveToTable(b,x) 
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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State-Space Search (1) 

• Search the space of states (first chapters)  

• Initial state, goal test, step cost, etc. 

• Actions are the transitions between state 

• Actions are invertible (why?) 

• Move forward from the initial state: Forward State-Space Search 
or Progression Planning 

• Move backward from goal state: Backward State-Space Search or 
Regression Planning 
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State-Space Search (2) 
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State-Space Search (3) 
• Remember that the language has no functions symbols 

• Thus number of states is finite 

• And we can use any complete search algorithm (e.g., A*) 
• We need an admissible heuristic 

• The solution is a path, a sequence of actions: total-order planning 

• Problem: Space and time complexity 
• STRIPS-style planning is PSPACE-complete unless actions have  

• only positive preconditions and  

• only one literal effect 
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SRIPS in State-Space Search 

 STRIPS representation makes it easy to focus on 
‘relevant’ propositions and  
 Work backward from goal (using EFFECTS) 

 Work forward from initial state (using PRECONDITIONS) 

 Facilitating bidirectional search 
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Relevant Action 

• An action is relevant 

• In Progression planning when its preconditions match 
a subset of the current state 

• In Regression planning, when its effects match a 
subset of the current goal state 
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Consistent Action 

• The purpose of applying an action is to ‘achieves 
a desired literal’ 

• We should be careful that the action does not 
undo a desired literal (as a side effect) 

• A consistent action is an action that does not 
undo a desired literal 
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Backward State-Space Search 

• Given  
• A goal G description 

• An action A that is relevant and consistent 

• Generate a predecessor state where 
• Positive effects (literals) of A in G are deleted 

• Precondition literals of A are added unless they already appear 

• Substituting any variables in A’s effects to match literals in G  

• Substituting any variables in A’s preconditions to match 
substitutions in A’s effects 

• Repeat until predecessor description matches initial state 
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Heuristic to Speed up Search 

• We can use A*, but we need an admissible 
heuristic 

1. Divide-and-conquer: sub-goal independence 
assumption 

• Problem relaxation by removing 

2. … all preconditions 

3. … all preconditions and negative effects 

4. … negative effects only: Empty-Delete-List  

26 



1. Subgoal Independence Assumption 

• The cost of solving a conjunction of subgoals is the sum 
of the costs of solving each subgoal independently 

• Optimistic 
• Where subplans interact negatively 

• Example: one action in a subplan delete goal achieved by an 
action in another subplan  

• Pessimistic (not admissible) 
• Redundant actions in subplans can be replaced by a single action 

in  merged plan 
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2. Problem Relaxation: Removing Preconditions 

• Remove preconditions from action descriptions 

• All actions are applicable 

• Every literal in the goal is achievable in one step  

• Number of steps to achieve the conjunction of 
literals in the goal is equal to the number of 
unsatisfied literals 

• Alert 

• Some actions may achieve several literals 

• Some action may remove the effect of another action 
28 



3. Remove Preconditions & Negative Effects 

• Considers only positive interactions among 
actions to achieve multiple subgoals 

• The minimum number of actions required is the 
sum of the union of the actions’ positive effects 
that satisfy the goal 

• The problem is reduced to a set cover problem, 
which is NP-hard 

• Approximation by a greedy algorithm cannot 
guarantee an admissible heuristic 
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4. Removing Negative Effects (Only) 

• Remove all negative effects of actions (no action 
may destroy the effects of another) 

• Known as the Empty-Delete-List heuristic 

• Requires running a simple planning algorithm 

• Quick & effective 

• Usable in progression or regression planning 
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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Partial Order Planning (POP) 

 State-space search 
 Yields totally ordered plans (linear plans) 

 POP  
 Works on subproblems independently, then combines subplans 

 Example 

▪ Goal(RightShoeOn  LeftShoeOn) 

▪ Init() 

▪ Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn) 

▪ Action(RightSock, EFFECT: RightSockOn) 

▪ Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn) 

▪ Action(LeftSock, EFFECT: LeftSockOn) 
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POP Example & its linearization 
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Components of a Plan 
1. A set of actions 

2. A set of ordering constraints  
• A p B reads “A before B” but not necessarily immediately before B 

• Alert: caution to cycles A p B and B p A 

3. A set of causal links (protection intervals) between actions 
• A           B reads “A achieves p for B” and p must  remain true from the time A 

is applied to the time B is applied 

• Example “RightSock                      RightShoe 

4. A set of open preconditions 
• Planners work to reduce the set of open preconditions to the empty set w/o 

introducing contradictions 
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RightSockOn 



Consistent Plan (POP) 

• Consistent plan is a plan that has 
• No cycle in the ordering constraints 

• No conflicts with the causal links 

• Solution 
• Is a consistent plan with no open preconditions 

• To solve a conflict between a causal link A         B and an 
action C (that clobbers, threatens the causal link), we 
force C to occur outside the “protection interval”  by 
adding 
•  the constraint  C p A  (demoting C) or  

•  the constraint  B p C (promoting C) 
35 
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Setting up the PoP 

• Add dummy states  

• Start 

• Has no preconditions 

• Its effects are the literals of the initial state 

• Finish 

• Its preconditions are the literals of the goal state 

• Has no effects 

• Initial Plan: 
• Actions: {Start, Finish} 

• Ordering constraints: {Start p Finish} 

• Causal links: {} 

• Open Preconditions: {LeftShoeOn,RightShoeOn} 
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Start 

Finish 

Start 

Finish 

LeftShoeOn, RightShoeOn 

Literal1, Literal2, … 

Literala, Literalb, … 



POP as a Search Problem 

• The successor function arbitrarily picks one open 
precondition p on an action B 

• For every possible consistent action A that achieves p 
• It generates a successor plan adding the causal link  A          B and 

the ordering constraint  A p B 

• If A was not in the plan, it adds  Start p A and  A p Finish 

• It resolves all conflicts between  

• the new causal link and all existing actions  

• between A and all existing causal links 

• Then it adds the successor states for  combination of resolved 
conflicts 

• It repeats until no open precondition exists 
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Example of POP: Flat tire problem 

• See problem description in Fig 11.7 page 391 

 
 

 

• Only one open precondition 

• Only 1 applicable action 

 

 

 

 

 
38 

Start 

Finish 

At(Spare,Trunk), At(Flat,Axle) 

At(Spare,Axle) 

PutOn(Spare,Axle) 

At(Spare,Ground), At(Flat,Axle) 

• Pick up At(Spare,Ground) 

• Choose only applicable action 

Remove(Spare,Trunk) 
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• Pick up At(Flat,Axle) 

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle) 

• Choose LeaveOvernight 

Add causal link between 

Remove(Spare,Trunk) and 

PutOn(Spare,Axle) 

• LeaveOvernight has effect 

At(Spare,Ground), which conflicts 

with the causal link 

• We remove the conflict by 

forcing LeaveOvernight to occur 

before Remove(Spare,Trunk) 
• Conflicts with effects of Remove(Spare,Trunk) 

• The only way to resolve the conflict is to undo LeaveOvernightuse the action 

Remove(Flat,Axle) 
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• This time, we choose Remove(Flat,Axle) 

• Pick up At(Spare,Trunk) and choose Start to achieve it 

• Pick up At(Flat,Axle) and choose Start to achieve it. 

• We now have a complete consistent partially ordered plan 



POP Algorithm (1) 

• Backtrack when fails to resolve a threat or find an 
operator 

• Causal links  
• Recognize when to abandon a doomed plan without wasting time 

expanding irrelevant part of the plan 

• allow early pruning of inconsistent combination of actions 

• When actions include variables, we need to find 
appropriate substitutions 
• Typically we try to delay commitments to instantiating a variable 

until we have no other choice (least commitment)  

• POP is sound, complete, and systematic (no repetition) 
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POP Algorithm (2) 

• Decomposes the problem (advantage)  

• But does not represent states explicitly: it is hard to 
design heuristic to estimate distance from goal 
• Example: Number of open preconditions – those that match the 

effects of the start node.  Not perfect (same problems as before) 

• A heuristic can be used to choose which plan to refine 
(which precondition to pick-up):  
• Choose the most-constrained precondition, the one satisfied by 

the least number of actions.  Like in CSPs!  

• When no action satisfies a precondition, backtrack! 

• When only one action satisfies a precondition, pick up the 
precondiction.  
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Outline 

 Background 

 Situation Calculus 

 Frame, qualification, & ramification problems 

 Representation language 
 Planning Algorithms 

 State-Space Search 

 Partial-Order Planning (POP) 

 Planning Graphs (GRAPHPLAN) 

 SAT Planners 
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Planning Graph 
 Is special data structure used for  

1. Deriving better heuristic estimates 
2. Extract a solution to the planning problem: GRAPHPLAN algorithm 

 Is a sequence S0,A0,S1,A1,…,Si of levels 
 Alternating state levels & action levels 
 Levels correspond to time stamps 
 Starting at initial state 
 State level is a set of (propositional) literals 

▪ All those literals that could be true at that level 

 Action level is a set of (propositionalized) actions 
▪ All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.) 

 Propositionalization may yield combinatorial explosition in the presence of a large 
number of objects 
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Focus 

• Building the Planning Graph 

• Using it for Heuristic Estimation 

• Using it for generating the plan 
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Example of a Planning Graph (1) 
Init(Have(Cake)) 

Goal(Have(Cake)Eaten(Cake)) 
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Action(Eat(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)Eaten(Cake)) 

Action(Bake(Cake) 

Precond: Have(Cake) 

Effect: Have(Cake)) 

Propositions true at 
the initial state 

Action is connected to its 
preconds & effects 

Persistence Actions (noop) 



Example of a Planning Graph (2) 
• At each state level, list all literals that may hold at that level 

• At each action level, list all noops & all actions whose preconditions may hold at 
previous levels 

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1) 

• Building the Planning Graph is a polynomial process 

• Add (binary) mutual exclusion (mutex) links between conflicting actions and 
between conflicting literals 
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Mutual exclusion links S1 represents multiple states 



Mutex Links between Actions 

1. Inconsistent effects: one action negates an effect of another 
• Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake) 

2. Interference: An action effect negates the precondition of another 
• Eat(Cake) negates precondition of the noop of Have(Cake):  

3. Competing needs: A precondition on an action is mutex with the 
precondition of another 
• Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition 
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Mutex Links between Literals 

1. Two literals are negation of each other 

2. Inconsistent support: Each pair of actions that can 
achieve the two literals is mutex.  Examples: 
• In S1, Have(Cake) & Eaten(Cake) are mutex 

• In S2, they are not because Bake(Cake) & the noop of Eaten(Cake) 
are not mutex 
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Focus 

 Building the Planning Graph 
 Using it for Heuristic Estimation 

 Planning graph as a relaxation of original problem 

 Easy to build (compute) 
 Using it for generating the plan 

50 



Planning Graph for Heuristic Estimation 

• A literal that does not appear in the final level cannot be achieved by 
any plan 

• State-space search: Any state containing an unachievable literal has cost 
h(n)= 

• POP: Any plan with an unachievable open condition has cost h(n)= 

• The estimate cost of any goal literal is the first level at which it 
appears 

• Estimate is admissible for individual literals 

• Estimate can be improved by serializing the graph (serial planning graph: 
one action per level) by adding mutex between all actions in a given level 

• The estimate of a conjunction of goal literals 
• Three heuristics: max level, level sum, set level  
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Estimate of Conjunction of Goal Literals 

• Max-level 
• The largest level of a literal in the conjunction 

• Admissible, not very accurate 

• Level sum  
• Under subgoal independence assumption, sums the level costs of 

the literals 

• Inadmissible, works well for largely decomposable problems 

• Set level 
• Finds the level  at which all literals appear w/o any pair of them 

being mutex 

• Dominates max-level, works extremely well on problems where 
there is a great deal of interaction among subplans 52 



Focus 

 Building the Planning Graph 
 Using it for Heuristic Estimation 
 Using it for generating the plan 

 GraphPlan algorithm [Blum & Furst, 95] 
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GRAPHPLAN algorithm 

GRAPHPLAN(problem) returns solution or failure 
graph  INITIALPLANNINGGRAPH(problem) 
goals  GOALS[problem] 
loop do 
    if goals all non-mutex in last level of graph then do 
       solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph)) 
       if solution  failure then return solution 
       else if  NOSOLUTIONPOSSIBLE(graph) then return failure 
    graph  EXPANDGRAPH (graph,problem) 

   
 Two main stages 

1. Extract solution 

2. Expand the graph 
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Example of GRAPHPLAN Execution (1) 
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• At(Spare,Axle) is not in S0 

• No need to extract solution 

• Expand the plan 



Example of GRAPHPLAN Execution (2) 
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• Three actions 
are applicable 

• 3 actions and 
5 noops are 
added 

• Mutex links 
are added 

• At(Spare,Axle) 
still not in S1 

• Plan is 
expanded 



Example of GRAPHPLAN Execution (3) 
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• Illustrates well mutex links: inconsistent effects, interference, 
competing needs, inconsistent support 



Solution Extraction (Backward) 
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1. Solve a Boolean CSP:  Variables are actions, domains are 
{0=out of plan, 1=in plan), constraints are mutex 

2. Search problem from last level backward 



Backtrack Search for Solution Extraction 

• Starting at the highest fact level 

• Each goal is put in a goal list for the current fact layer 

• Search iterates thru each fact in the goal list trying to find an action to 
support it which is not mutex with any other chosen action 

• When an action is chosen, its preconditions are added to the goal list of 
the lower level 

• When all facts in the goal list of the current level have a consistent 
assignment of actions, the search moves to the next level 

• Search backtracks to the previous level when it fails to assign an 
action to each fact in the goal list at a given level 

• Search succeeds when the first level is reached. 
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Termination of GRAPHPLAN 

 GRAPHPLAN is guaranteed to terminate 

 Literal increase monotonically 

 Actions increase monotonically 

 Mutexes decrease monotinically 

 A solution is guaranteed not to exist when 

 The graph levels off with all goals present & non-mutex, and 

 EXTRACTSOLUTION fails to find solution 
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Optimality of GRAPHPLAN  

 The plans generated by GRAPHPLAN  

  Are optimal in the number of steps needed to execute the plan 

 Not necessarily optimal in the number of actions in the plan  
(GRAPHPLAN produces partially ordered plans) 
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Outline 
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