

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Planning

Situation Calculus: Ontology
• Situations

• Fluents

• Atemporal (or eternal)
predicates & functions

2

AIMA Section 10.3

Situation Calculus: Ontology
• Situations

• Initial state: S0

• A function Result(a.s) gives the situation resulting from
applying action a in situation s

• Fluents

• Functions & predicates whose truth values can change from
one situation to the other

• Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions

• Example: Gold(G1), LeftLegOf(Wumpus)

 3

Situation Calculus

• Sequence of actions

• Result([],s)=s

• Result([a|seq],s)=Result(seq,Result(a,s))

• Projection task

• Deducing the outcome of a sequence of actions

• Planning task

• Find a sequence of actions that achieves a desired effect

4

Example: Wumpus World

• Fluents

• At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]

• At(Agent,[1,1],S0) At(G1,[1,2],S0)

• In S0, we also need to have:

• At(o,x,S0) [(o=Agent) x=[1,1]] [(o=G1) x=[1,2]]

• Holding(o,S0)

• Gold(G1) Adjacent([1,1],[1,2]) Adjacent([1,2],[1,1])

• The query is:

• seq At(G1,[1,1],Result(seq,S0))

• The answer is

• At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))

5

Importance of Situation Calculus

 Historical note
 Situation Calculus was the first attempt to formalizing planning

in FOL

 Other formalisms include Event Calculus

 The area of using logic for planning is informally called in the
literature “Reasoning About Action & Change”

 Highlighted three important problems
1. Frame problem

2. Qualification problem

3. Ramification problem

6

‘Famous’ Problems

• Frame problem
• Representing all things that stay the same from one situation to

the next

• Inferential and representational

• Qualification problem
• Defining the circumstances under which an action is guaranteed

to work

• Example: what if the gold is slippery or nailed down, etc.

• Ramification problem
• Proliferation of implicit consequences of actions as actions may

have secondary consequences

• Examples: How about the dust on the gold? 7

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Algorithms

8

Planning Languages

• Languages must represent..

• States

• Goals

• Actions

• Languages must be

• Expressive for ease of representation

• Flexible for manipulation by algorithms

9

State Representation

• A state is represented with a conjunction of
positive literals

• Using

• Logical Propositions: Poor Unknown

• FOL literals: At(Plane1,OMA) At(Plan2,JFK)

• FOL literals must be ground & function-free

• Not allowed: At(x,y) or At(Father(Fred),Sydney)

• Closed World Assumption

• What is not stated are assumed false

10

Goal Representation

• Goal is a partially specified state

• A proposition satisfies a goal if it contains all the atoms of the
goal and possibly others..

• Example: Rich Famous Miserable satisfies the goal Rich
Famous

11

Action Representation

 Action Schema

 Action name

 Preconditions

 Effects

 Example
Action(Fly(p,from,to),

 PRECOND: At(p,from) Plane(p) Airport(from) Airport(to)

 EFFECT: At(p,from) At(p,to))

 Sometimes, Effects are split into ADD list and
DELETE list

12

Fly(WHI,LNK,OHA)

At(WHI,LNK),Plane(WHI),

Airport(LNK), Airport(OHA)

At(WHI,OHA), At(WHI,LNK)

Applying an Action

• Find a substitution list for the variables
• of all the precondition literals

• with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect
list

• Add the result to the current state description to
generate the new state

• Example:
• Current state: At(P1,JFK) At(P2,SFO) Plane(P1) Plane(P2) Airport(JFK)

Airport(SFO)

• It satisfies the precondition with ={p/P1,from/JFK, to/SFO)

• Thus the action Fly(P1,JFK,SFO) is applicable

• The new current state is: At(P1,SFO) At(P2,SFO) Plane(P1) Plane(P2)
Airport(JFK) Airport(SFO)

13

Languages for Planning Problems

• STRIPS
• Stanford Research Institute Problem Solver

• Historically important

• ADL
• Action Description Languages

• See Table 11.1 for STRIPS versus ADL

• PDDL
• Planning Domain Definition Language

• Revised & enhanced for the needs of the International Planning
Competition

• Currently version 3.1
14

http://ipc.informatik.uni-freiburg.de/PddlExtension

Example: Air Cargo

• See Figure 11.2

• Initial state

• Goal State

• Actions: Load, Unload, Fly

15

Example: Spare Tire Problem

• See Figure 11.3

• Initial State

• Goal State

• Actions:
• Remove(Spare,Trunk), Remove(Flat, Axle)

• PutOn(Spare,Axle)

• LeaveOvernight

• Note

• the negated precondition At(Flat,Axle) not allowed in STRIPS.

• Could be easily replaced with Clear(Axle), adding one more
predicate to the language

16

Example: Blocks World

• See Fig 11.4

• Initial state

• Goal

• Actions:

• Move(b,x,y)

• MoveToTable(b,x)

17

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

18

State-Space Search (1)

• Search the space of states (first chapters)

• Initial state, goal test, step cost, etc.

• Actions are the transitions between state

• Actions are invertible (why?)

• Move forward from the initial state: Forward State-Space Search
or Progression Planning

• Move backward from goal state: Backward State-Space Search or
Regression Planning

19

State-Space Search (2)

20

State-Space Search (3)
• Remember that the language has no functions symbols

• Thus number of states is finite

• And we can use any complete search algorithm (e.g., A*)
• We need an admissible heuristic

• The solution is a path, a sequence of actions: total-order planning

• Problem: Space and time complexity
• STRIPS-style planning is PSPACE-complete unless actions have

• only positive preconditions and

• only one literal effect

21

SRIPS in State-Space Search

 STRIPS representation makes it easy to focus on
‘relevant’ propositions and
 Work backward from goal (using EFFECTS)

 Work forward from initial state (using PRECONDITIONS)

 Facilitating bidirectional search

22

Relevant Action

• An action is relevant

• In Progression planning when its preconditions match
a subset of the current state

• In Regression planning, when its effects match a
subset of the current goal state

23

Consistent Action

• The purpose of applying an action is to ‘achieves
a desired literal’

• We should be careful that the action does not
undo a desired literal (as a side effect)

• A consistent action is an action that does not
undo a desired literal

24

Backward State-Space Search

• Given
• A goal G description

• An action A that is relevant and consistent

• Generate a predecessor state where
• Positive effects (literals) of A in G are deleted

• Precondition literals of A are added unless they already appear

• Substituting any variables in A’s effects to match literals in G

• Substituting any variables in A’s preconditions to match
substitutions in A’s effects

• Repeat until predecessor description matches initial state

25

Heuristic to Speed up Search

• We can use A*, but we need an admissible
heuristic

1. Divide-and-conquer: sub-goal independence
assumption

• Problem relaxation by removing

2. … all preconditions

3. … all preconditions and negative effects

4. … negative effects only: Empty-Delete-List

26

1. Subgoal Independence Assumption

• The cost of solving a conjunction of subgoals is the sum
of the costs of solving each subgoal independently

• Optimistic
• Where subplans interact negatively

• Example: one action in a subplan delete goal achieved by an
action in another subplan

• Pessimistic (not admissible)
• Redundant actions in subplans can be replaced by a single action

in merged plan

27

2. Problem Relaxation: Removing Preconditions

• Remove preconditions from action descriptions

• All actions are applicable

• Every literal in the goal is achievable in one step

• Number of steps to achieve the conjunction of
literals in the goal is equal to the number of
unsatisfied literals

• Alert

• Some actions may achieve several literals

• Some action may remove the effect of another action
28

3. Remove Preconditions & Negative Effects

• Considers only positive interactions among
actions to achieve multiple subgoals

• The minimum number of actions required is the
sum of the union of the actions’ positive effects
that satisfy the goal

• The problem is reduced to a set cover problem,
which is NP-hard

• Approximation by a greedy algorithm cannot
guarantee an admissible heuristic

 29

4. Removing Negative Effects (Only)

• Remove all negative effects of actions (no action
may destroy the effects of another)

• Known as the Empty-Delete-List heuristic

• Requires running a simple planning algorithm

• Quick & effective

• Usable in progression or regression planning

30

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

31

Partial Order Planning (POP)

 State-space search
 Yields totally ordered plans (linear plans)

 POP
 Works on subproblems independently, then combines subplans

 Example

▪ Goal(RightShoeOn LeftShoeOn)

▪ Init()

▪ Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

▪ Action(RightSock, EFFECT: RightSockOn)

▪ Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

▪ Action(LeftSock, EFFECT: LeftSockOn)

 32

POP Example & its linearization

33

Components of a Plan
1. A set of actions

2. A set of ordering constraints
• A p B reads “A before B” but not necessarily immediately before B

• Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions
• A B reads “A achieves p for B” and p must remain true from the time A

is applied to the time B is applied

• Example “RightSock RightShoe

4. A set of open preconditions
• Planners work to reduce the set of open preconditions to the empty set w/o

introducing contradictions

34

p

RightSockOn

Consistent Plan (POP)

• Consistent plan is a plan that has
• No cycle in the ordering constraints

• No conflicts with the causal links

• Solution
• Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A B and an
action C (that clobbers, threatens the causal link), we
force C to occur outside the “protection interval” by
adding
• the constraint C p A (demoting C) or

• the constraint B p C (promoting C)
35

p

Setting up the PoP

• Add dummy states

• Start

• Has no preconditions

• Its effects are the literals of the initial state

• Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:
• Actions: {Start, Finish}

• Ordering constraints: {Start p Finish}

• Causal links: {}

• Open Preconditions: {LeftShoeOn,RightShoeOn}

36

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …

POP as a Search Problem

• The successor function arbitrarily picks one open
precondition p on an action B

• For every possible consistent action A that achieves p
• It generates a successor plan adding the causal link A B and

the ordering constraint A p B

• If A was not in the plan, it adds Start p A and A p Finish

• It resolves all conflicts between

• the new causal link and all existing actions

• between A and all existing causal links

• Then it adds the successor states for combination of resolved
conflicts

• It repeats until no open precondition exists

37

p

Example of POP: Flat tire problem

• See problem description in Fig 11.7 page 391

• Only one open precondition

• Only 1 applicable action

38

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action

Remove(Spare,Trunk)

39

• Pick up At(Flat,Axle)

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle)

• Choose LeaveOvernight

Add causal link between

Remove(Spare,Trunk) and

PutOn(Spare,Axle)

• LeaveOvernight has effect

At(Spare,Ground), which conflicts

with the causal link

• We remove the conflict by

forcing LeaveOvernight to occur

before Remove(Spare,Trunk)
• Conflicts with effects of Remove(Spare,Trunk)

• The only way to resolve the conflict is to undo LeaveOvernightuse the action

Remove(Flat,Axle)

40

• This time, we choose Remove(Flat,Axle)

• Pick up At(Spare,Trunk) and choose Start to achieve it

• Pick up At(Flat,Axle) and choose Start to achieve it.

• We now have a complete consistent partially ordered plan

POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an
operator

• Causal links
• Recognize when to abandon a doomed plan without wasting time

expanding irrelevant part of the plan

• allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find
appropriate substitutions
• Typically we try to delay commitments to instantiating a variable

until we have no other choice (least commitment)

• POP is sound, complete, and systematic (no repetition)
41

POP Algorithm (2)

• Decomposes the problem (advantage)

• But does not represent states explicitly: it is hard to
design heuristic to estimate distance from goal
• Example: Number of open preconditions – those that match the

effects of the start node. Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine
(which precondition to pick-up):
• Choose the most-constrained precondition, the one satisfied by

the least number of actions. Like in CSPs!

• When no action satisfies a precondition, backtrack!

• When only one action satisfies a precondition, pick up the
precondiction.

42

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

43

Planning Graph
 Is special data structure used for

1. Deriving better heuristic estimates
2. Extract a solution to the planning problem: GRAPHPLAN algorithm

 Is a sequence S0,A0,S1,A1,…,Si of levels
 Alternating state levels & action levels
 Levels correspond to time stamps
 Starting at initial state
 State level is a set of (propositional) literals

▪ All those literals that could be true at that level

 Action level is a set of (propositionalized) actions
▪ All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.)

 Propositionalization may yield combinatorial explosition in the presence of a large
number of objects

44

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

45

Example of a Planning Graph (1)
Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

46

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at
the initial state

Action is connected to its
preconds & effects

Persistence Actions (noop)

Example of a Planning Graph (2)
• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at
previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and
between conflicting literals

47
Mutual exclusion links S1 represents multiple states

Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another
• Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another
• Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the
precondition of another
• Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

48

Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can
achieve the two literals is mutex. Examples:
• In S1, Have(Cake) & Eaten(Cake) are mutex

• In S2, they are not because Bake(Cake) & the noop of Eaten(Cake)
are not mutex

49

Focus

 Building the Planning Graph
 Using it for Heuristic Estimation

 Planning graph as a relaxation of original problem

 Easy to build (compute)
 Using it for generating the plan

50

Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by
any plan

• State-space search: Any state containing an unachievable literal has cost
h(n)=

• POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it
appears

• Estimate is admissible for individual literals

• Estimate can be improved by serializing the graph (serial planning graph:
one action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals
• Three heuristics: max level, level sum, set level

51

Estimate of Conjunction of Goal Literals

• Max-level
• The largest level of a literal in the conjunction

• Admissible, not very accurate

• Level sum
• Under subgoal independence assumption, sums the level costs of

the literals

• Inadmissible, works well for largely decomposable problems

• Set level
• Finds the level at which all literals appear w/o any pair of them

being mutex

• Dominates max-level, works extremely well on problems where
there is a great deal of interaction among subplans 52

Focus

 Building the Planning Graph
 Using it for Heuristic Estimation
 Using it for generating the plan

 GraphPlan algorithm [Blum & Furst, 95]

53

GRAPHPLAN algorithm

GRAPHPLAN(problem) returns solution or failure
graph INITIALPLANNINGGRAPH(problem)
goals GOALS[problem]
loop do
 if goals all non-mutex in last level of graph then do
 solution EXTRACTSOLUTION(graph,goals,LENGTH(graph))
 if solution failure then return solution
 else if NOSOLUTIONPOSSIBLE(graph) then return failure
 graph EXPANDGRAPH (graph,problem)

 Two main stages

1. Extract solution

2. Expand the graph

54

Example of GRAPHPLAN Execution (1)

55

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan

Example of GRAPHPLAN Execution (2)

56

• Three actions
are applicable

• 3 actions and
5 noops are
added

• Mutex links
are added

• At(Spare,Axle)
still not in S1

• Plan is
expanded

Example of GRAPHPLAN Execution (3)

57

• Illustrates well mutex links: inconsistent effects, interference,
competing needs, inconsistent support

Solution Extraction (Backward)

58

1. Solve a Boolean CSP: Variables are actions, domains are
{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward

Backtrack Search for Solution Extraction

• Starting at the highest fact level

• Each goal is put in a goal list for the current fact layer

• Search iterates thru each fact in the goal list trying to find an action to
support it which is not mutex with any other chosen action

• When an action is chosen, its preconditions are added to the goal list of
the lower level

• When all facts in the goal list of the current level have a consistent
assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an
action to each fact in the goal list at a given level

• Search succeeds when the first level is reached.

59

Termination of GRAPHPLAN

 GRAPHPLAN is guaranteed to terminate

 Literal increase monotonically

 Actions increase monotonically

 Mutexes decrease monotinically

 A solution is guaranteed not to exist when

 The graph levels off with all goals present & non-mutex, and

 EXTRACTSOLUTION fails to find solution

60

Optimality of GRAPHPLAN

 The plans generated by GRAPHPLAN

 Are optimal in the number of steps needed to execute the plan

 Not necessarily optimal in the number of actions in the plan
(GRAPHPLAN produces partially ordered plans)

61

Outline
 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

62

