

INTELLIGENT SYSTEMS (CSE-303-F)

Section C

Planning

Situation Calculus: Ontology
• Situations

• Fluents

• Atemporal (or eternal)
predicates & functions

2

AIMA Section 10.3

Situation Calculus: Ontology
• Situations

• Initial state: S0

• A function Result(a.s) gives the situation resulting from
applying action a in situation s

• Fluents

• Functions & predicates whose truth values can change from
one situation to the other

• Example: Holding(G1,S0)

• Atemporal (or eternal) predicates and functions

• Example: Gold(G1), LeftLegOf(Wumpus)

 3

Situation Calculus

• Sequence of actions

• Result([],s)=s

• Result([a|seq],s)=Result(seq,Result(a,s))

• Projection task

• Deducing the outcome of a sequence of actions

• Planning task

• Find a sequence of actions that achieves a desired effect

4

Example: Wumpus World

• Fluents

• At(o,p,s), Holding(o,s)

• Agent is in [1,1], gold is in [1,2]

• At(Agent,[1,1],S0)  At(G1,[1,2],S0)

• In S0, we also need to have:

• At(o,x,S0)  [(o=Agent)  x=[1,1]]  [(o=G1)  x=[1,2]]

• Holding(o,S0)

• Gold(G1)  Adjacent([1,1],[1,2])  Adjacent([1,2],[1,1])

• The query is:

•  seq At(G1,[1,1],Result(seq,S0))

• The answer is

• At(G1,[1,1],Result(Go([1,1],[1,2]),Grab(G1),Go([1,2],[1,1]),S0))

5

Importance of Situation Calculus

 Historical note
 Situation Calculus was the first attempt to formalizing planning

in FOL

 Other formalisms include Event Calculus

 The area of using logic for planning is informally called in the
literature “Reasoning About Action & Change”

 Highlighted three important problems
1. Frame problem

2. Qualification problem

3. Ramification problem

6

‘Famous’ Problems

• Frame problem
• Representing all things that stay the same from one situation to

the next

• Inferential and representational

• Qualification problem
• Defining the circumstances under which an action is guaranteed

to work

• Example: what if the gold is slippery or nailed down, etc.

• Ramification problem
• Proliferation of implicit consequences of actions as actions may

have secondary consequences

• Examples: How about the dust on the gold? 7

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Algorithms

8

Planning Languages

• Languages must represent..

• States

• Goals

• Actions

• Languages must be

• Expressive for ease of representation

• Flexible for manipulation by algorithms

9

State Representation

• A state is represented with a conjunction of
positive literals

• Using

• Logical Propositions: Poor  Unknown

• FOL literals: At(Plane1,OMA)  At(Plan2,JFK)

• FOL literals must be ground & function-free

• Not allowed: At(x,y) or At(Father(Fred),Sydney)

• Closed World Assumption

• What is not stated are assumed false

10

Goal Representation

• Goal is a partially specified state

• A proposition satisfies a goal if it contains all the atoms of the
goal and possibly others..

• Example: Rich  Famous  Miserable satisfies the goal Rich 
Famous

11

Action Representation

 Action Schema

 Action name

 Preconditions

 Effects

 Example
Action(Fly(p,from,to),

 PRECOND: At(p,from)  Plane(p)  Airport(from)  Airport(to)

 EFFECT: At(p,from)  At(p,to))

 Sometimes, Effects are split into ADD list and
DELETE list

12

Fly(WHI,LNK,OHA)

At(WHI,LNK),Plane(WHI),

Airport(LNK), Airport(OHA)

At(WHI,OHA),  At(WHI,LNK)

Applying an Action

• Find a substitution list  for the variables
• of all the precondition literals

• with (a subset of) the literals in the current state description

• Apply the substitution to the propositions in the effect
list

• Add the result to the current state description to
generate the new state

• Example:
• Current state: At(P1,JFK)  At(P2,SFO)  Plane(P1)  Plane(P2)  Airport(JFK) 

Airport(SFO)

• It satisfies the precondition with ={p/P1,from/JFK, to/SFO)

• Thus the action Fly(P1,JFK,SFO) is applicable

• The new current state is: At(P1,SFO)  At(P2,SFO)  Plane(P1)  Plane(P2) 
Airport(JFK)  Airport(SFO)

13

Languages for Planning Problems

• STRIPS
• Stanford Research Institute Problem Solver

• Historically important

• ADL
• Action Description Languages

• See Table 11.1 for STRIPS versus ADL

• PDDL
• Planning Domain Definition Language

• Revised & enhanced for the needs of the International Planning
Competition

• Currently version 3.1
14

http://ipc.informatik.uni-freiburg.de/PddlExtension

Example: Air Cargo

• See Figure 11.2

• Initial state

• Goal State

• Actions: Load, Unload, Fly

15

Example: Spare Tire Problem

• See Figure 11.3

• Initial State

• Goal State

• Actions:
• Remove(Spare,Trunk), Remove(Flat, Axle)

• PutOn(Spare,Axle)

• LeaveOvernight

• Note

• the negated precondition At(Flat,Axle) not allowed in STRIPS.

• Could be easily replaced with Clear(Axle), adding one more
predicate to the language

16

Example: Blocks World

• See Fig 11.4

• Initial state

• Goal

• Actions:

• Move(b,x,y)

• MoveToTable(b,x)

17

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

18

State-Space Search (1)

• Search the space of states (first chapters)

• Initial state, goal test, step cost, etc.

• Actions are the transitions between state

• Actions are invertible (why?)

• Move forward from the initial state: Forward State-Space Search
or Progression Planning

• Move backward from goal state: Backward State-Space Search or
Regression Planning

19

State-Space Search (2)

20

State-Space Search (3)
• Remember that the language has no functions symbols

• Thus number of states is finite

• And we can use any complete search algorithm (e.g., A*)
• We need an admissible heuristic

• The solution is a path, a sequence of actions: total-order planning

• Problem: Space and time complexity
• STRIPS-style planning is PSPACE-complete unless actions have

• only positive preconditions and

• only one literal effect

21

SRIPS in State-Space Search

 STRIPS representation makes it easy to focus on
‘relevant’ propositions and
 Work backward from goal (using EFFECTS)

 Work forward from initial state (using PRECONDITIONS)

 Facilitating bidirectional search

22

Relevant Action

• An action is relevant

• In Progression planning when its preconditions match
a subset of the current state

• In Regression planning, when its effects match a
subset of the current goal state

23

Consistent Action

• The purpose of applying an action is to ‘achieves
a desired literal’

• We should be careful that the action does not
undo a desired literal (as a side effect)

• A consistent action is an action that does not
undo a desired literal

24

Backward State-Space Search

• Given
• A goal G description

• An action A that is relevant and consistent

• Generate a predecessor state where
• Positive effects (literals) of A in G are deleted

• Precondition literals of A are added unless they already appear

• Substituting any variables in A’s effects to match literals in G

• Substituting any variables in A’s preconditions to match
substitutions in A’s effects

• Repeat until predecessor description matches initial state

25

Heuristic to Speed up Search

• We can use A*, but we need an admissible
heuristic

1. Divide-and-conquer: sub-goal independence
assumption

• Problem relaxation by removing

2. … all preconditions

3. … all preconditions and negative effects

4. … negative effects only: Empty-Delete-List

26

1. Subgoal Independence Assumption

• The cost of solving a conjunction of subgoals is the sum
of the costs of solving each subgoal independently

• Optimistic
• Where subplans interact negatively

• Example: one action in a subplan delete goal achieved by an
action in another subplan

• Pessimistic (not admissible)
• Redundant actions in subplans can be replaced by a single action

in merged plan

27

2. Problem Relaxation: Removing Preconditions

• Remove preconditions from action descriptions

• All actions are applicable

• Every literal in the goal is achievable in one step

• Number of steps to achieve the conjunction of
literals in the goal is equal to the number of
unsatisfied literals

• Alert

• Some actions may achieve several literals

• Some action may remove the effect of another action
28

3. Remove Preconditions & Negative Effects

• Considers only positive interactions among
actions to achieve multiple subgoals

• The minimum number of actions required is the
sum of the union of the actions’ positive effects
that satisfy the goal

• The problem is reduced to a set cover problem,
which is NP-hard

• Approximation by a greedy algorithm cannot
guarantee an admissible heuristic

 29

4. Removing Negative Effects (Only)

• Remove all negative effects of actions (no action
may destroy the effects of another)

• Known as the Empty-Delete-List heuristic

• Requires running a simple planning algorithm

• Quick & effective

• Usable in progression or regression planning

30

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

31

Partial Order Planning (POP)

 State-space search
 Yields totally ordered plans (linear plans)

 POP
 Works on subproblems independently, then combines subplans

 Example

▪ Goal(RightShoeOn  LeftShoeOn)

▪ Init()

▪ Action(RightShoe, PRECOND: RightSockOn, EFFECT: RightShoeOn)

▪ Action(RightSock, EFFECT: RightSockOn)

▪ Action(LeftShoe, PRECOND: LeftSockOn, EFFECT: LeftShoeOn)

▪ Action(LeftSock, EFFECT: LeftSockOn)

 32

POP Example & its linearization

33

Components of a Plan
1. A set of actions

2. A set of ordering constraints
• A p B reads “A before B” but not necessarily immediately before B

• Alert: caution to cycles A p B and B p A

3. A set of causal links (protection intervals) between actions
• A B reads “A achieves p for B” and p must remain true from the time A

is applied to the time B is applied

• Example “RightSock RightShoe

4. A set of open preconditions
• Planners work to reduce the set of open preconditions to the empty set w/o

introducing contradictions

34

p

RightSockOn

Consistent Plan (POP)

• Consistent plan is a plan that has
• No cycle in the ordering constraints

• No conflicts with the causal links

• Solution
• Is a consistent plan with no open preconditions

• To solve a conflict between a causal link A B and an
action C (that clobbers, threatens the causal link), we
force C to occur outside the “protection interval” by
adding
• the constraint C p A (demoting C) or

• the constraint B p C (promoting C)
35

p

Setting up the PoP

• Add dummy states

• Start

• Has no preconditions

• Its effects are the literals of the initial state

• Finish

• Its preconditions are the literals of the goal state

• Has no effects

• Initial Plan:
• Actions: {Start, Finish}

• Ordering constraints: {Start p Finish}

• Causal links: {}

• Open Preconditions: {LeftShoeOn,RightShoeOn}

36

Start

Finish

Start

Finish

LeftShoeOn, RightShoeOn

Literal1, Literal2, …

Literala, Literalb, …

POP as a Search Problem

• The successor function arbitrarily picks one open
precondition p on an action B

• For every possible consistent action A that achieves p
• It generates a successor plan adding the causal link A B and

the ordering constraint A p B

• If A was not in the plan, it adds Start p A and A p Finish

• It resolves all conflicts between

• the new causal link and all existing actions

• between A and all existing causal links

• Then it adds the successor states for combination of resolved
conflicts

• It repeats until no open precondition exists

37

p

Example of POP: Flat tire problem

• See problem description in Fig 11.7 page 391

• Only one open precondition

• Only 1 applicable action

38

Start

Finish

At(Spare,Trunk), At(Flat,Axle)

At(Spare,Axle)

PutOn(Spare,Axle)

At(Spare,Ground), At(Flat,Axle)

• Pick up At(Spare,Ground)

• Choose only applicable action

Remove(Spare,Trunk)

39

• Pick up At(Flat,Axle)

• There are 2 applicable actions: LeaveOvernight and Remove(Flat,Axle)

• Choose LeaveOvernight

Add causal link between

Remove(Spare,Trunk) and

PutOn(Spare,Axle)

• LeaveOvernight has effect

At(Spare,Ground), which conflicts

with the causal link

• We remove the conflict by

forcing LeaveOvernight to occur

before Remove(Spare,Trunk)
• Conflicts with effects of Remove(Spare,Trunk)

• The only way to resolve the conflict is to undo LeaveOvernightuse the action

Remove(Flat,Axle)

40

• This time, we choose Remove(Flat,Axle)

• Pick up At(Spare,Trunk) and choose Start to achieve it

• Pick up At(Flat,Axle) and choose Start to achieve it.

• We now have a complete consistent partially ordered plan

POP Algorithm (1)

• Backtrack when fails to resolve a threat or find an
operator

• Causal links
• Recognize when to abandon a doomed plan without wasting time

expanding irrelevant part of the plan

• allow early pruning of inconsistent combination of actions

• When actions include variables, we need to find
appropriate substitutions
• Typically we try to delay commitments to instantiating a variable

until we have no other choice (least commitment)

• POP is sound, complete, and systematic (no repetition)
41

POP Algorithm (2)

• Decomposes the problem (advantage)

• But does not represent states explicitly: it is hard to
design heuristic to estimate distance from goal
• Example: Number of open preconditions – those that match the

effects of the start node. Not perfect (same problems as before)

• A heuristic can be used to choose which plan to refine
(which precondition to pick-up):
• Choose the most-constrained precondition, the one satisfied by

the least number of actions. Like in CSPs!

• When no action satisfies a precondition, backtrack!

• When only one action satisfies a precondition, pick up the
precondiction.

42

Outline

 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

43

Planning Graph
 Is special data structure used for

1. Deriving better heuristic estimates
2. Extract a solution to the planning problem: GRAPHPLAN algorithm

 Is a sequence S0,A0,S1,A1,…,Si of levels
 Alternating state levels & action levels
 Levels correspond to time stamps
 Starting at initial state
 State level is a set of (propositional) literals

▪ All those literals that could be true at that level

 Action level is a set of (propositionalized) actions
▪ All those actions whose preconditions appear in the state level (ignoring all negative interactions, etc.)

 Propositionalization may yield combinatorial explosition in the presence of a large
number of objects

 

44

Focus

• Building the Planning Graph

• Using it for Heuristic Estimation

• Using it for generating the plan

45

Example of a Planning Graph (1)
Init(Have(Cake))

Goal(Have(Cake)Eaten(Cake))

46

Action(Eat(Cake)

Precond: Have(Cake)

Effect: Have(Cake)Eaten(Cake))

Action(Bake(Cake)

Precond: Have(Cake)

Effect: Have(Cake))

Propositions true at
the initial state

Action is connected to its
preconds & effects

Persistence Actions (noop)

Example of a Planning Graph (2)
• At each state level, list all literals that may hold at that level

• At each action level, list all noops & all actions whose preconditions may hold at
previous levels

• Repeat until plan ‘levels off,’ no new literals appears (Si=Si+1)

• Building the Planning Graph is a polynomial process

• Add (binary) mutual exclusion (mutex) links between conflicting actions and
between conflicting literals

47
Mutual exclusion links S1 represents multiple states

Mutex Links between Actions

1. Inconsistent effects: one action negates an effect of another
• Eat(Cake) & noop of Have(Cake) disagree on effect Have(Cake)

2. Interference: An action effect negates the precondition of another
• Eat(Cake) negates precondition of the noop of Have(Cake):

3. Competing needs: A precondition on an action is mutex with the
precondition of another
• Bake(Cake) & Eat(Cake): compete on Have(Cake) precondition

48

Mutex Links between Literals

1. Two literals are negation of each other

2. Inconsistent support: Each pair of actions that can
achieve the two literals is mutex. Examples:
• In S1, Have(Cake) & Eaten(Cake) are mutex

• In S2, they are not because Bake(Cake) & the noop of Eaten(Cake)
are not mutex

49

Focus

 Building the Planning Graph
 Using it for Heuristic Estimation

 Planning graph as a relaxation of original problem

 Easy to build (compute)
 Using it for generating the plan

50

Planning Graph for Heuristic Estimation

• A literal that does not appear in the final level cannot be achieved by
any plan

• State-space search: Any state containing an unachievable literal has cost
h(n)=

• POP: Any plan with an unachievable open condition has cost h(n)=

• The estimate cost of any goal literal is the first level at which it
appears

• Estimate is admissible for individual literals

• Estimate can be improved by serializing the graph (serial planning graph:
one action per level) by adding mutex between all actions in a given level

• The estimate of a conjunction of goal literals
• Three heuristics: max level, level sum, set level

51

Estimate of Conjunction of Goal Literals

• Max-level
• The largest level of a literal in the conjunction

• Admissible, not very accurate

• Level sum
• Under subgoal independence assumption, sums the level costs of

the literals

• Inadmissible, works well for largely decomposable problems

• Set level
• Finds the level at which all literals appear w/o any pair of them

being mutex

• Dominates max-level, works extremely well on problems where
there is a great deal of interaction among subplans 52

Focus

 Building the Planning Graph
 Using it for Heuristic Estimation
 Using it for generating the plan

 GraphPlan algorithm [Blum & Furst, 95]

53

GRAPHPLAN algorithm

GRAPHPLAN(problem) returns solution or failure
graph  INITIALPLANNINGGRAPH(problem)
goals  GOALS[problem]
loop do
 if goals all non-mutex in last level of graph then do
 solution  EXTRACTSOLUTION(graph,goals,LENGTH(graph))
 if solution  failure then return solution
 else if NOSOLUTIONPOSSIBLE(graph) then return failure
 graph  EXPANDGRAPH (graph,problem)

 Two main stages

1. Extract solution

2. Expand the graph

54

Example of GRAPHPLAN Execution (1)

55

• At(Spare,Axle) is not in S0

• No need to extract solution

• Expand the plan

Example of GRAPHPLAN Execution (2)

56

• Three actions
are applicable

• 3 actions and
5 noops are
added

• Mutex links
are added

• At(Spare,Axle)
still not in S1

• Plan is
expanded

Example of GRAPHPLAN Execution (3)

57

• Illustrates well mutex links: inconsistent effects, interference,
competing needs, inconsistent support

Solution Extraction (Backward)

58

1. Solve a Boolean CSP: Variables are actions, domains are
{0=out of plan, 1=in plan), constraints are mutex

2. Search problem from last level backward

Backtrack Search for Solution Extraction

• Starting at the highest fact level

• Each goal is put in a goal list for the current fact layer

• Search iterates thru each fact in the goal list trying to find an action to
support it which is not mutex with any other chosen action

• When an action is chosen, its preconditions are added to the goal list of
the lower level

• When all facts in the goal list of the current level have a consistent
assignment of actions, the search moves to the next level

• Search backtracks to the previous level when it fails to assign an
action to each fact in the goal list at a given level

• Search succeeds when the first level is reached.

59

Termination of GRAPHPLAN

 GRAPHPLAN is guaranteed to terminate

 Literal increase monotonically

 Actions increase monotonically

 Mutexes decrease monotinically

 A solution is guaranteed not to exist when

 The graph levels off with all goals present & non-mutex, and

 EXTRACTSOLUTION fails to find solution

60

Optimality of GRAPHPLAN

 The plans generated by GRAPHPLAN

 Are optimal in the number of steps needed to execute the plan

 Not necessarily optimal in the number of actions in the plan
(GRAPHPLAN produces partially ordered plans)

61

Outline
 Background

 Situation Calculus

 Frame, qualification, & ramification problems

 Representation language
 Planning Algorithms

 State-Space Search

 Partial-Order Planning (POP)

 Planning Graphs (GRAPHPLAN)

 SAT Planners

62

